Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720361

RESUMO

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Assuntos
Cardiotoxicidade , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doxorrubicina/efeitos adversos , Cardiotoxicidade/etiologia , Animais , Disbiose , Transplante de Microbiota Fecal
2.
Int Immunopharmacol ; 133: 111877, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38608440

RESUMO

The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.


Assuntos
Quimiocina CCL2 , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Neoplasias Hepáticas , Monócitos , Receptores CCR2 , Receptor 4 Toll-Like , Microbioma Gastrointestinal/imunologia , Animais , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Monócitos/imunologia , Quimiocina CCL2/metabolismo , Camundongos , Receptores CCR2/metabolismo , Receptor 4 Toll-Like/metabolismo , Masculino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais , Linhagem Celular Tumoral , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo
3.
Cell Rep Med ; 5(4): 101478, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631285

RESUMO

Immunotherapy has emerged as a robust approach against cancer, yet its efficacy has varied among individuals, accompanied by the occurrence of immune-related adverse events. As a result, the efficacy of immunotherapy is far from satisfactory, and enormous efforts have been invested to develop strategies to improve patient outcomes. The gut microbiome is now well acknowledged for its critical role in immunotherapy, with better understanding on host-microbes interaction in the context of cancer treatment. Also, an increasing number of trials have been conducted to evaluate the potential and feasibility of microbiome-targeting approaches to enhance efficacy of cancer treatment in patients. Here, the role of the gut microbiome and metabolites (e.g., short-chain fatty acids, tryptophan metabolites) in immunotherapy and the underlying mechanisms are explored. The application of microbiome-targeting approaches that aim to improve immunotherapy efficacy (e.g., fecal microbiota transplantation, probiotics, dietary intervention) is also elaborated, with further discussion on current challenges and suggestions for future research.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Imunoterapia , Resultado do Tratamento , Transplante de Microbiota Fecal
4.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654015

RESUMO

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Assuntos
Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/microbiologia , Animais , Humanos , Camundongos , Fezes/microbiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo
5.
Phytomedicine ; 128: 155577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608488

RESUMO

BACKGROUND: Gastrointestinal mucositis stands as one of the most severe side effects of irinotecan (CPT-11). however, only palliative treatment is available at present. Therefore, there is an urgent need for adjunctive medications to alleviate the side effects of CPT-11. PURPOSE: In this study, our objective was to explore whether ginsenoside Rh4 could serve as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, thereby alleviating the side effects of CPT-11 and augmenting its anti-tumor efficacy. STUDY DESIGN: A CPT-11-induced gastrointestinal mucositis model was used to investigate whether ginsenoside Rh4 alleviated CPT-11-induced gastrointestinal mucositis and enhanced the anti-tumor activity of CPT-11. METHODS: In this study, we utilized CT26 cells to establish a xenograft tumor model, employing transcriptomics, genomics, and metabolomics techniques to investigate the impact of ginsenoside Rh4 on CPT-11-induced gastrointestinal mucositis and the effect on the anti-tumor activity of CPT-11. Furthermore, we explored the pivotal role of gut microbiota and their metabolites through fecal microbiota transplantation (FMT) experiments and supplementation of the key differential metabolite, hyodeoxycholic acid (HDCA). RESULTS: The results showed that ginsenoside Rh4 repaired the impairment of intestinal barrier function and restored intestinal mucosal homeostasis in a gut microbiota-dependent manner. Ginsenoside Rh4 treatment modulated gut microbiota diversity and upregulated the abundance of beneficial bacteria, especially Lactobacillus_reuteri and Akkermansia_muciniphila, which further regulated bile acid biosynthesis, significantly promoted the production of the beneficial secondary bile acid hyodeoxycholic acid (HDCA), thereby alleviating CPT-11-induced gut microbiota dysbiosis. Subsequently, ginsenoside Rh4 further alleviated gastrointestinal mucositis through the TGR5-TLR4-NF-κB signaling pathway. On the other hand, ginsenoside Rh4 combination therapy could further reduce the weight and volume of colon tumors, promote tumor cell apoptosis, and enhance the anti-tumor activity of CPT-11 by inhibiting the PI3K-Akt signaling pathway, thus exerting a synergistic anti-tumor effect. CONCLUSION: In summary, our findings confirm that ginsenoside Rh4 can alleviate CPT-11-induced gastrointestinal mucositis and enhance the anti-tumor activity of CPT-11 by modulating gut microbiota and its related metabolites. Our study validates the potential of ginsenoside Rh4 as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, offering new therapeutic strategies for addressing chemotherapy side effects and improving chemotherapy efficacy.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Irinotecano , Mucosite , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Irinotecano/farmacologia , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transplante de Microbiota Fecal , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Antineoplásicos Fitogênicos/farmacologia
6.
Front Biosci (Landmark Ed) ; 29(4): 152, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682201

RESUMO

Metastasis remains a leading cause of mortality for patients with solid tumors. An expanding body of literature suggests interplay between the host, gut, and tumoral microbiomes may play a role in cancer initiation and distant dissemination. These associations have been particularly well-studied in colorectal cancer, where gut dysbiosis and an endotoxin-induced inflammatory milieu foster premalignant polyp formation, setting the stage for carcinogenesis. Subsequent violation of the gut vascular barrier enables dissemination of bacterial agents to sites such as the liver, where they contribute to establishment of pre-metastatic niches, which promote tumor cell extravasation and metastatic outgrowth. Intriguingly, breakdown of this vascular barrier has been shown to be aided by the presence of tumoral bacteria. The presence of similar species, including Fusobacterium nucleatum and Escherichia Coli, in both primary and metastatic colorectal tumors, supports this hypothesis and their presence is associated with chemotherapy resistance and an overall poor prognosis. Specific gut microbial populations are also associated with differential response to immunotherapy, which has a growing role in microsatellite unstable colorectal cancers. Recent work suggests that modulation of gut microbiome using dietary modification, targeted antibiotics, or fecal microbiota transplantation may improve response to immunotherapy and oncologic outcomes. Elucidation of the precise mechanistic links between the microbiome and cancer dissemination will open the doors to additional therapeutic possibilities.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Metástase Neoplásica , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Bactérias/classificação , Bactérias/genética , Transplante de Microbiota Fecal
7.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(4): 326-337, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38644237

RESUMO

Chronic constipation is one of the common gastrointestinal disorders, with an incidence rate that is gradually increasing yearly and becoming an important chronic disease that affects people's health and quality of life. In recent years, significant progress has been made in the basic and clinical research of chronic constipation, especially the gut microbiota therapy methods have received increasing attention. Therefore, under the initiative of the Parenteral and Enteral Nutrition Branch of the Chinese Medical Association, Chinese Society for the Promotion of Human Health Science and Technology, and Committee on Gut Microecology and Fecal Microbiota Transplantation, experts from relevant fields in China have been organized to establish the "Chinese Expert Consensus on the Clinical Diagnosis and Treatment of Gut Microecology in Chronic Constipation (2024 Edition)" committee. Focusing on the dysbiosis of gut microbiota, the indications for gut microbiota therapy, and the protocols for fecal microbiota transplantation, 16 consensus opinions were proposed based on the review of domestic and international literature and the clinical experience of experts, aiming to standardize the clinical application of gut microbiota in chronic constipation.


Assuntos
Consenso , Constipação Intestinal , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Constipação Intestinal/terapia , Constipação Intestinal/diagnóstico , Doença Crônica , China , Disbiose/terapia , Disbiose/diagnóstico , Qualidade de Vida
8.
J Agric Food Chem ; 72(17): 9818-9827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647087

RESUMO

The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.


Assuntos
Envelhecimento , Bifidobacterium bifidum , Fezes , Galactose , Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Animais , Lacticaseibacillus casei/metabolismo , Humanos , Camundongos , Probióticos/administração & dosagem , Probióticos/farmacologia , Bifidobacterium bifidum/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Fezes/química , Masculino , Transplante de Microbiota Fecal , Pessoa de Meia-Idade , Feminino , Idoso , Camundongos Endogâmicos C57BL , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo
9.
Medicina (Kaunas) ; 60(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674209

RESUMO

The gastrointestinal tract is inhabited by the gut microbiota. The main phyla are Firmicutes and Bacteroidetes. In non-alcoholic fatty liver disease, now renamed metabolic dysfunction-associated fatty liver disease (MAFLD), an alteration in Firmicutes and Bacteroidetes abundance promotes its pathogenesis and evolution into non-alcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. For this reason, early treatment is necessary to counteract its progression. The aim of the present narrative review is to evaluate the different therapeutic approaches to MAFLD. The most important treatment for MAFLD is lifestyle changes. In this regard, the Mediterranean diet could be considered the gold standard in the prevention and treatment of MAFLD. In contrast, a Western diet should be discouraged. Probiotics and fecal microbiota transplantation seem to be valid, safe, and effective alternatives for MAFLD treatment. However, more studies with a longer follow-up and with a larger cohort of patients are needed to underline the more effective approaches to contrasting MAFLD.


Assuntos
Dieta Mediterrânea , Transplante de Microbiota Fecal , Hepatopatia Gordurosa não Alcoólica , Humanos , Transplante de Microbiota Fecal/métodos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Microbioma Gastrointestinal/fisiologia
10.
Gut Microbes ; 16(1): 2327442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478462

RESUMO

In small series, third-party fecal microbiota transplantation (FMT) has been successful in decolonizing the gut from clinically relevant antibiotic resistance genes (ARGs). Less is known about the short- and long-term effects of FMT on larger panels of ARGs. We analyzed 226 pre- and post-treatment stool samples from a randomized placebo-controlled trial of FMT in 100 patients undergoing allogeneic hematopoietic cell transplantation or receiving anti-leukemia induction chemotherapy for 47 ARGs. These patients have heavy antibiotic exposure and a high incidence of colonization with multidrug-resistant organisms. Samples from each patient spanned a period of up to 9 months, allowing us to describe both short- and long-term effects of FMT on ARGs, while the randomized design allowed us to distinguish between spontaneous changes vs. FMT effect. We find an overall bimodal pattern. In the first phase (days to weeks after FMT), low-level transfer of ARGs largely associated with commensal healthy donor microbiota occurs. This phase is followed by long-term resistance to new ARGs as stable communities with colonization resistance are formed after FMT. The clinical implications of these findings are likely context-dependent and require further research. In the setting of cancer and intensive therapy, long-term ARG decolonization could translate into fewer downstream infections.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/genética , Resultado do Tratamento , Resistência Microbiana a Medicamentos , Fezes
11.
Gut Microbes ; 16(1): 2333483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532703

RESUMO

Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.


Assuntos
Clostridioides difficile , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Doença de Crohn/microbiologia , Transplante de Microbiota Fecal , Disbiose/microbiologia
12.
Dis Colon Rectum ; 67(S1): S99-S105, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363696

RESUMO

BACKGROUND: Chronic antibiotic refractory pouchitis after restorative proctocolectomy with IPAA, characterized by at least 4 weeks of pouchitis symptoms that have not responded to standard antibiotic therapy, presents a therapeutic challenge for patients and health care providers. OBJECTIVE: The aim of this narrative review was to summarize the current evidence regarding the management of chronic antibiotic refractory pouchitis. DATA SOURCES: Studies were identified through a search of the PubMed database from the National Library of Medicine. STUDY SELECTION: We included case series, cohort studies, randomized controlled trials, and systematic reviews with meta-analyses that addressed chronic antibiotic refractory pouchitis management, with prioritization of data published within the past 3 to 5 years. INTERVENTION: Studies examining pharmacologic and select nonpharmacologic interventions were included. MAIN OUTCOME MEASURE: Outcomes measures included clinical, endoscopic, and histologic end points. RESULTS: Mesalamine has demonstrated efficacy in symptom improvement but no improvement in quality of life. Budesonide has demonstrated high rates of clinical remission that have mostly been sustained in a small number of patients. Anti-tumor necrosis factor therapies have demonstrated efficacy in reaching clinical and even endoscopic end points, although rates of treatment discontinuation were not insignificant. Limited evidence is encouraging for the use of ustekinumab in achieving clinical response. Data for vedolizumab are favorable across clinical, endoscopic, and histologic end points, including one of the only randomized, placebo-controlled trials. Nonmedication therapies, including hyperbaric oxygen therapy and fecal microbiota transplant, have undergone limited evaluation, and concerns about the ultimate accessibility of these therapies remain. LIMITATIONS: Overall, studies assessing therapeutic options for chronic antibiotic refractory pouchitis are mostly limited to case series and retrospective studies with small sample sizes. CONCLUSIONS: Biologic therapies have demonstrated efficacy in the management of chronic antibiotic refractory pouchitis and offer a steroid-sparing option for refractory disease. Nonpharmacologic therapies, including hyperbaric oxygen and fecal microbiota transplant, require further exploration. See video from symposium .


Assuntos
Antibacterianos , Pouchite , Proctocolectomia Restauradora , Pouchite/tratamento farmacológico , Pouchite/terapia , Humanos , Antibacterianos/uso terapêutico , Proctocolectomia Restauradora/efeitos adversos , Proctocolectomia Restauradora/métodos , Doença Crônica , Transplante de Microbiota Fecal/métodos , Medicina Baseada em Evidências
13.
Cardiovasc Res ; 120(6): 612-622, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400709

RESUMO

AIMS: Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS: C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION: We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.


Assuntos
Colo , Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/microbiologia , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/etiologia , Masculino , Colo/microbiologia , Colo/patologia , Ribotipagem , Neoplasias do Colo/patologia , Neoplasias do Colo/microbiologia , Bactérias/genética , Fezes/microbiologia , Interações Hospedeiro-Patógeno
14.
J Virol ; 98(2): e0203523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299844

RESUMO

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Microbioma Gastrointestinal , Animais , Bovinos , Camundongos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/complicações , Doença das Mucosas por Vírus da Diarreia Viral Bovina/microbiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Butiratos/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Diarreia , Vírus da Diarreia Viral Bovina/patogenicidade , Vírus da Diarreia Viral Bovina/fisiologia , Disbiose/complicações , Disbiose/microbiologia , Disbiose/virologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transplante de Microbiota Fecal , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Modelos Animais de Doenças
15.
Trends Mol Med ; 30(3): 209-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195358

RESUMO

Fecal microbiota transplantation (FMT) has emerged as an alternative or adjunct experimental therapy for microbiome-associated diseases following its success in the treatment of recurrent Clostridioides difficile infections (rCDIs). However, the mechanisms of action involved remain relatively unknown. The term 'dysbiosis' has been used to describe microbial imbalances in relation to disease, but this traditional definition fails to consider the complex cross-feeding networks that define the stability of the microbiome. Emerging research transitions toward the targeted restoration of microbial functional networks in treating different diseases. In this review, we explore potential mechanisms responsible for the efficacy of FMT and future therapeutic applications, while revisiting definitions of 'dysbiosis' in favor of functional network restoration in rCDI, inflammatory bowel diseases (IBDs), metabolic diseases, and cancer.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Transplante de Microbiota Fecal , Infecções por Clostridium/terapia , Resultado do Tratamento
16.
Neuroscience ; 541: 91-100, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38296019

RESUMO

Ischaemic stroke can induce changes in the abundance of gut microbiota constituents, and the outcome of stroke may also be influenced by the gut microbiota. This study aimed to determine whether gut microbiota transplantation could rescue changes in the gut microbiota and reduce ferroptosis after stroke in rats. Male Sprague-Dawley rats (6 weeks of age) were subjected to ischaemic stroke by middle cerebral artery occlusion (MCAO). Fecal samples were collected for 16S ribosomal RNA (rRNA) sequencing to analyze the effects of FMT on the gut microbiota. Neurological deficits were evaluated using the Longa score. triphenyl tetrazolium chloride (TTC) staining was performed in the brain, and kits were used to measure malondialdehyde (MDA), iron, and glutathione (GSH) levels in the ipsilateral brain of rats. Western blotting was used to detect the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and the transferrin receptor 2 (TFR2) in the ipsilateral brain of rats. Stroke induced significant changes in the gut microbiota, and FMT ameliorated these changes. TTC staining results showed that FMT reduced cerebral infarct volume. In addition, FMT diminished MDA and iron levels and elevated GSH levels in the ipsilateral brain. Western blot analysis showed that FMT increased GPX4 and SLC7A11 protein expression and decreased TFR2 protein expression in the ipsilateral brain after stroke. FMT can reverse gut microbiota dysbiosis, reduce cerebellar infarct volume, and decrease ferroptosis after stroke.


Assuntos
Isquemia Encefálica , Ferroptose , AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Transplante de Microbiota Fecal , Isquemia Encefálica/terapia , AVC Isquêmico/terapia , Cloretos , Glutationa , Ferro
17.
Bone Marrow Transplant ; 59(3): 409-416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212672

RESUMO

Acute graft-versus-host disease (aGvHD) is a serious complication of allogeneic hematopoietic stem-cell transplantation with limited treatment options. The gut microbiome plays a critical role in aGvHD pathogenesis. Fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach to restore gut microbial diversity. In this prospective pilot study, 21 patients with steroid-resistant or steroid-dependent lower gastrointestinal aGvHD received FMT in capsule form. At 28 days after the first FMT, the overall response rate was 52.4%, with 23.8% complete and 28.6% partial responses. However, sustained responses were infrequent, with only one patient remaining aGvHD-free long-term. FMT was generally well-tolerated. Microbiome analysis revealed dysbiosis in pre-FMT patient stool samples, with distinct microbial characteristics compared to donors. Following FMT, there was an increase in beneficial Clostridiales and a decrease in pathogenic Enterobacteriales. These findings highlight the potential of FMT as a treatment option for steroid-resistant aGvHD. Trial registration number NCT #03214289.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Projetos Piloto , Estudos Prospectivos , Trato Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Esteroides
18.
RMD Open ; 10(1)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38296309

RESUMO

OBJECTIVES: The gut microbiota can mediate both pro and anti-inflammatory responses. In patients with psoriatic arthritis (PsA), we investigated the impact of faecal microbiota transplantation (FMT), relative to sham transplantation, on 92 inflammation-associated plasma proteins. METHODS: This study relates to the FLORA trial cohort, where 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate treatment, were included in a 26-week, double-blind, randomised, sham-controlled trial. Participants were allocated to receive either one gastroscopic-guided healthy donor FMT (n=15) or sham (n=16). Patient plasma samples were collected at baseline, week 4, 12 and 26 while samples from 31 age-matched and sex-matched healthy controls (HC) were collected at baseline. Samples were analysed using proximity extension assay technology (Olink Target-96 Inflammation panel). RESULTS: Levels of 26 proteins differed significantly between PsA and HC pre-FMT (adjusted p<0.05), of which 10 proteins were elevated in PsA: IL-6, CCL20, CCL19, CDCP1, FGF-21, HGF, interferon-γ (IFN-γ), IL-18R1, monocyte chemotactic protein 3, and IL-2. In the FMT group, levels of 12 proteins changed significantly across all timepoints (tumour necrosis factor (TNF), CDCP1, IFN-γ, TWEAK, signalling lymphocytic activation molecule (SLAMF1), CD8A, CD5, Flt3L, CCL25, FGF-23, CD6, caspase-8). Significant differences in protein levels between FMT and sham-treated patients were observed for TNF (p=0.002), IFN-γ (p=0.011), stem cell factor (p=0.024), matrix metalloproteinase-1 (p=0.038), and SLAMF1 (p=0.042). FMT had the largest positive effect on IFN-γ, Axin-1 and CCL25 and the largest negative effect on CCL19 and IL-6. CONCLUSIONS: Patients with active PsA have a distinct immunological plasma protein signature compared with HC pre-FMT. FMT affects several of these disease markers, including sustained elevation of IFN-γ. TRIAL REGISTRATION NUMBER: NCT03058900.


Assuntos
Artrite Psoriásica , Humanos , Artrite Psoriásica/terapia , Artrite Psoriásica/etiologia , Transplante de Microbiota Fecal/efeitos adversos , Interleucina-6 , Resultado do Tratamento , Inflamação/etiologia , Fator de Necrose Tumoral alfa , Antígenos de Neoplasias , Moléculas de Adesão Celular
19.
EBioMedicine ; 100: 104967, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241975

RESUMO

The incidence of cancer has shown a great increase during the past decades and poses tough challenges to cancer treatment. Anti-tumour immunotherapy, represented by immune checkpoint inhibitors (ICIs), possesses favorable remission in unrestricted spectrum of cancer types. However, its efficacy seems to be heterogeneous among accumulating studies. Emerging evidences suggest that gut microbiota can modulate anti-tumour immuno-response and predict clinical prognosis. Therefore, remodeling microbiota characteristics with fecal microbiota transplantation (FMT) may be capable of reinforcing host ICIs performance by regulating immune-tumour cell interactions and altering microbial metabolites, thereby imperceptibly shifting the tumour microenvironment. However, the long-term safety of FMT is under concern, which calls for more rigorous screening. In this review, we examine current experimental and clinical evidences supporting the FMT efficacy in boosting anti-tumour immuno-response and lessening tumour-related complications. Moreover, we discuss the challenges in FMT and propose feasible resolutions, which may offer crucial guidance for future clinical operations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Transplante de Microbiota Fecal , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
20.
J Drug Target ; 32(2): 101-114, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38174845

RESUMO

The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Fezes , Resultado do Tratamento , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA